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ABSTRACT

The design of shock isolation systems for equipment and personnel
platforms within aboveground and underground hardened structures is
explained in this report by the use of both the shock spectra and the
velocity pulse techniques, Ground motions are explained and their pertinent
quantities are defined; the effect of the structure supporting the shock
isolation system is considered; aad methods are presented to obtain the
response of practical isolation systems. Design procedures are outlined
witﬁ frequent use of numerical examples; and tolerance levels are summarized,
so that the calculated responses of designed systems may remain within
acceptable limits. The report also gives a descriptive account of almost
all the major shock isolation systems that have been installed at various

military facilities,
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SECTION 1; INTRODUCTION

1,1 Scope

The purpose of this report is to provide design and analysis proce-
dures for shock isolation systems placed inside hardened structures, The
procedures are intended for the use of -engineers in the planning, design
and analysis of installations to resist the effects of nuclear weapons.

The need and requirements for shock isolation systems can be defined
and definitive designs for such systems can be prepared through well-outlined
procedures based on principles of engineering mechanics, experimental data,
and methods of translating engineering analyses into the practical design
of isolation systems, Theoretical considerations based on research and the
available data from nuclear and non-nuclear tests will therefore serve as
the starting point for developing design procedures. Many approximations
and simplifications, however, will be made in order to move out of the do-
main of research and to achieve the main purpose of the report = the
development of procedures by which engineering decisions can be made within
the degree of accuracy required for the design of shock isolation systems
for hardened structures. The scope of this report will be governed by this
consideration,

For the use of this report as a design guide, the reader is expected

to have a basic background in engineering mechanics and some knowledge of
the fundamentals of nuclear weapon effects and protective construction.

For those who do not have this background the report will be useful by pro-
viding data and procedures that give the bases for evaluating the scope and
effort involved in design of shock isolation systems in protective struce

tures,

1.2 Objective

An introductory treatment of the subject of shock isolation must con-
sider four distinct and interacting factors: air blast effects, ground mo-

tion effects, dynémic response, and damage levels of equipment and personnel.



The objective of this report is to discuss these factors and to develop
methods of design and analysis for shock isolation systems in hardened

structures.

1.3 CGeneral Requirements and Procedures

Equipment and personnel within a protective structure may experience
a severe shock resulting from the sudden motion of the structure., Failure
of equipment and injury to personnel may occur even though the structure
will maintain 1its integrity under the applied loads. The loads to be
considered are those resulting from the explosion of nuclear weapons and they
may be due to direct air blast impingment on the structure or to induced
ground motions, _

If the equipment is "hard-mounted" (i,e., attached directly to the
structure), it must be ruggedly constructed. Equipment which does not have
the required ruggedﬁess should be "soft-mounted'", i,e,, supported by shock
isolation devices which allow the structure to move relative to the equip-
ment and which transmit accelerations much smaller than those the structure
receives., Shock isolation thus involves the protection of equipment by
isolators interposed between it and the supporting structure.

Personnel housed inside a protective structure must be protected from
injury due to the shock motion of the structure., Impact injury may result
from loss of balance even at low shock levels, Therefore,a shock isolatea
platform may be required for adequate protection of personnel when the
structure is subjected to nuclear weapon effects,

Shock isolation systems in hardened facilities may be grouped some-
-what generally into four classes as follows:

a. To support entire multi-floor structures often used to house-
personnel and equipment

b, To support fleors or platforms within structures

c. To support missiles in their launching structure, either in the
launching position or in a position from which they are elevated to
the launching position

d, To support various individual items of equipment,

2



Mechanical devices for shock isolation consist of helical springs, pendu-
lums, beams, pneumatic and liquid springs, alone or in combination, depend-
ing on specific requirements,

All input motions to shock isolated systems are associated with mo-
tions of their supports. The support motions depend on numerous factors:

a., Motion characteristics of the structural element which consti-

tutes the "support"

b. Magnitude of weapon yield

c. Type of burst (air, surface, buried)

Distance of structure from ground zero

e. Depth of structure below ground surface

f. Seismic properties of ground

g, Interaction of ground with structure

h. Interaction of blast wave and structure in structures exposed

directly to blast wave. | _

A consideration of all the above factors in determining the motion of
the supports of a shock isolated system is necessary, but it is seldom
achieved in a direct manner., Ordinarily the structural configuration and
properties are known and the weapon yield and the distance or the overs
pressure are specified. The magnitude of the yield determines the dufation
of the blast wave and the ground motion characteristics. The influence of
the factors f and g often must be estimated or inferred from field tests
or from simplified soil dynamics calculations,

The general procedure in developing a shock isolation system is out-
lined in the following steps.

As a first step, for below ground structures the characteristics of
the soil or rock environment anc the ground motions corresponding to nuclear
attack conditions of interest must be known., For above ground structures
the interaction of the air blast with the exposed structure results in a
complex loading profile that must be calculated. 1In the usual case, the
engineer starts with a knowledge of the yield of the nuclear weapon, the
distance of the structure from the weapon or the design overpressure, the
physical characteristics of the soil or rock and a conceptual design of the

structure, All parameters of irterest such as air blast pressure-time
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histories and soil displacements, velocities, and accelerations, must be
estimated. These parameters are referred to in the literature as the free-
field environment. ("Free-field" in general refers to the air medium as
well as to the ground.)

The second step is to evaluate the influence of the structure that is
interposed between the free-field and the equipment or personnel to be pro-
tected,

In the third step the survival requirements of the equipment and per-
sonnel must be defined - the degree of structural damage that may be toler-
ated; the tolerance on performance degradation; the possible need for the
equipment to continue to perform during the attack period, or the period
during which its service may be interrupted, These operational conditions
must then be translated into parameters that define the response character-
istics in terms of the physical behavior of an isolation system under shock -
a tolerance limit on peak accelerations at well-defined natural frequencies,
and maximum relative displacements between the structure and the isolated
equipment or platform. |

The fourth step is to obtain the dynamic response of the isolation
system to motions of the structure. Occasionally steps one, two and Iour
must be combined, because the interaction among the free-field, the struc-
ture, and isolation system cannot be readily defined and the analysis must
consider the situation as a total system,

The fifth step is a comparison of the results of the fourth step with
the tolerance limits set forth in the third step, The design is,of course,
revised until the prescribed conditions are met.

There is a sixth step that is most desirable but often ends up as a
compromise - experimental verification of the design under nuclear attack
or under conditions simulating the combined enviroument of ground shock and
air blast induced motions. A compromise is necessary in the simulation of
the various parameters because seismic disturbances in a given soil for a
given weapon vield, the effect of soil-structure interaction, and, for
above ground structures, air blast-structure interaction can seldom be

simulated in a satisfactory manner,



Finally, it is very important to introduce into the design the ability
of the system to survive within a range of input values in the vicinity of
the parameters that are accepted as criteria, Survival within a range of
input values is necessary because of many uncertainties in input, response
and tolerance. The specific reasons will become evident in the sections of

the report covering these topics,



SECTION 2: ELEMENTARY CONCEPTS OF SHOCK LSOLATION

2.1 Introduction

Design procedures for shock isclation systems are based on basic con-
cepts that use simple mathematical models from which the dynamic response
characteristics of the system are obtained, In this secticon a brief in-
troduction is given to the method of representing by a mathematical model
an internal system attached to the protective structure, depicting the sys-
tem in terms of characteristics that are susceptible to mathematical analy-
sis, Another model, defining a simple relationship between the structure
and the internal system, is devised by assuming that each unit can be
lumped into a single mass allowing the structure-equipment interaction to
be treated as a two-mass problem.

These simple concepts will introduce the basic mathematical relation-
ships from which may be developed two powerful techniques for analysis -
the shock spectra technique and the dynamic analysis for ground motions
expressed in terms of a time-dependent function. The techniques in this
section will be used when applying input motions (given in Section 3) to
problems ranging from very simple to complex shock isolation systems (given
in Section 5) mounted in various types of structures (given in Section 4).

Figure 2.la shows an equipment supported on a slab or beam inside
a structure, When the structure is subjected to shock in the vertical di-
rection, the slab tends to deflect as indicated by the dotted line. A
mathematical madel such as shown in Figure 2.1b describes the equipment
and the flexible slab as a two-mass system subjected to an input at the
support points of the slab. The equipment may or may not be supported on

isolator springs, If it is mounted directly to the slab, k2 and c, repre-

sent the stiffness and damping characteristics of the equipment moint con-

sisting usually of bolts and structural elements, If isolators are used,

the simple model makes k2 and Cqy characteristics of the isolator device.
For a shock applied in the herizontal direction, the slab may be

assumed to be rigid, and the mathematical model of Figure 2.1¢  would be



a reasonably accurate model for computing equipment response, the shock be-
ing applied directly at the base of the equipment due to rigid body motion
of the slab and the enclosing structure, If the slab of Figure 2,1a hap-
pens to be the roof of an aboveground structure and the equipment is mount-
ed to the ceiling, the relatively flexible support of the equipment will be
subjected to the direct effect of air blast forces, and the equipment re-
sponse will depend both on the slab deformations due to rigid body motion
of the structure and to slab responsaes due to air blast forces applied

directly to the roof slab,

- 3 oo Equipment

_{— Equipment

Beam or Slab

- - -~ "Y1  Bear or Slab my

Structure with
Internal Equipment

4
(2]
Lol
b
SLAARNUA.
AW
i‘ i
[

(a) Vertical Rigid Body
Motion of Structure
(b)
o " Equipment
R

Horizontal Rigid Body Motion of Structure

(c)
FIGURE 2.1

The examples of Figure 2.1, a single-mass-one-degree-of-freedom
system and a two-mass system, represent appropriate models for equipments
mounted directly to a structure element not directly exposed to the air
blast force, Some systems, of course, are more compleannd require'more
degrees of freedom to define their response characteristics, These more

complex systems will be discussed in Section 5,



2.2 Single-Mass-One-Degree-of-Freedom Undamped System

The response of an undamped one-degree-of-freedom system is of pri=-
mary importance because a great deal of reliable ground motion data is bas-
ed on the response of single-degree-of-freedom reed gages designed to cover
the frequency of interest and mounted in buried canisters exposed to nu-
clear weapon detonations. This data has been extrapolated for other soil
conditions and used as criteria for response motions of equipments or plat-
forms attached to the structure,

The equation of equilibrium of a single-degree-of-freedom (SDOF) sys-

tem is written as
mX = -k{x - xs) = «ky 2.1)

where v is the relative displacement between suppoxrt and equipment (change
in length of spring), X is the support displacement and x is the absolute

mass displacement, (See Figure 2,2.)

rm~a'x,k,i

X WX WX
s'Ts s

FIGURE 2.2: TYPICAL SDOF UNDAMPED SYSTEM

Equation (2,1) may be rewritten in the form
my + ky = ~mi (2.2)
or by placing w2 = k/m, the natural frequency of the system, it becomes
§o+aly = (2.3)

It is concluded from this fundamental relationship that

|m2y| =y + is =X (2.4)

which is the absolute value of the acceleration of the equipment mass. We



define the maximum amplification factor as

l2y] max ¥ * ¥

max [il max (2.5)

Iis ' max '-}is I max | i'{Sl max

A shock Spectrﬁm for this simple system is obtained by plotting wzy or the
ratio given by Equation (2.5) as a function of the frequency w (or é%) of
the system,

As an example illustrating the method, we consider a horizontal
velocity shock, ks, equal to an instantaneous EtEp velocity. The solution
of Equation (2,1} by the standard methods for solving such differential

equations, is
x = is(t - é sin wt) (2.6)

The relative deflection is

.

x -
y = 7? gin wt 2.7
giving
X
= 3
ymax w

The maximum absolute acceleration is

2 -
X oax = O Vpax = Y% {2.8)

and the relative velocity is
X
. . max
=% = = 2,9
Tmax s “max w ( )

In Figure 2.3, on a specialcoordinate system are plotted the maximum
relative displacement, maximum absolute acceleration, and maximum relative
velocity for a particular value »of is' (The velocity coordinate is the
true relative velocity for a step velocity pulse and a reasonable approxi-
mation for other input pulse shapes., Because in the general case it is
only an approximation to the relative velocity, the name "pseudo-velocity™
has been given to the quantity o>tained by the relationships of Equation
(2.9).) The three primitive quantities of motion are then assumed to be

simply related and they are plotted on a special four-scaled logarithmic
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coordinate system, The frequency £ of the responsive system is the
abscissa, the maximum velocity of the motion is the ordinate, the maximum
displacement coordinate is taken in a direction normal to straight lines
with positive slopes of unity, and the maximum acceleration coordinate is
in a direction normal to straight lines with negative slopes of unity.

Thus any point P in the coordinate system automatically obeys the relation:

v . 2.2
(xg)max 211f(:>’)max 4 n'f (y)malx

where
x = peak absolute acceleration in g's
¥ = peak relative pseudo-velocity in inches per second
y = peak relative displazement in inches,

This shock spectrum serves to define the motion of the mass m. Such
spectra are particularly useful when the ground motion cannot be defined
analytically, It should be noted that the maximum force applied to the
spring k as a consequence of the shock is m [ilmax where Iilmax is deter-
mined from Figure 2.3. Correspoadingly, the maximum deflection, Y max® of
the spring k is also determined from the same figure, For example, if a
single~degree-of«freedom-system has a frequency of 10 cps and the step-
velocity (&S) is 40 in/sec, the neak response is read directly from Figure
2.3, Ii'clmax = 6,5g and Ve 0.55 inches. Thus, shock spectra supply
necessary information for the strength design of supports for rigid mounted
equipment and also for the design of springs for shock mounts to limit the
maximum acceleration delivered to the mass of the equipment. The use of
shock spectra is further discussed in Section 2.4,

Damping is normally neglected when the peak response for spring de-
sign is the major consideration. When systems need to be shock isolated
to very low acceleration levels, damping may introduce a significant in-
crease in acceleration response, Also when the time to completely damp out
the motion is important, tnen the damping in the system cannot be ignored.

Section 5, Shock Isolation Systems, will cover this situation,
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2.3 Two-Mass Systems

In Subsection 2,2 the single-degree-of-freedom system was described
and the interpretation of the shock response spectrum for this system was
given. Many internal systems can be approximated by a two-mass system, the
second mass being the item to be isolated from the shock, and the first
mass being a flexible structural element on which the item is supported,

(Figure 2,4)

r m, == __ Equipment
% ‘ 2

T my o> _Structural Element

k
1

i i S T A A

Xg1¥51%g
FIGURE 2.4: TWO-MASS SYSTEM

The equations of motion for a two-mass system are

m¥, + (k1 + kz)x1 - k2x2 = klxs (2.10)

m2X2 + k2x2 - k2x1 =0 (2,11
where %1, X5 kz, x, are the absolute motions of the two masses,
Introducing a coordinate transformation,
- - Vo= %, - ¥ 2.12
Y = ¥y - X v = % - X ( )
Vo = ¥y 7 % Yp T ¥ T %
Fquations (2.10) and (2,11) can be rewritten in terms of the relative

displacements (y1 and yz) and relative accelerations (§1 and yz) and the

12



ground acceleration %S

m¥y + Uog + kp)yy = kyyy = -myX (2.13)

m,y, * k2y2 - kéyl = -m,X_ (2.14)
or

[m] & + [k] &) == [m] G (2.15)

in matrix notation (see Appendix A).

The solution to these two simultaneous differential equations is
covered by the general case of n simultaneous differential equations which
is given in Appendix A; it is presented in a form that is suited for elec-
tronie computer solutions. In thkis subsection, however, some simple con-
cepts will be presented based on approximations that will lead to the
calculation of peak responses for mass m, when the response of mass m to
a support motion input is known, the latter being readily calculated by
the principles applicable to a single-degree-of-freedom system,

For illustration of the bacic relationships, let it be assumed that

the support input is a step velocity pulse, If the mass m, is assumed small

relative to m, 5 the motion of m1 becomes independent of the motion of My s
simplifying the analysis considerably,
Considering first the mass ™ for which the equation of equilibrium
is written as
mxX, = kl(xS - xl) (2.16)

and the step-velocity shock input
ﬁs(t) = ks (constant) (2,17

we write, as in Equation (2,16),

. |
X = X (t -‘EI sin wlt) (2.18)

The differential equation of motion for the mass m, is
myR_ = k2(x1 - xz) (2.19)

Applying the initial conditions X, = *2 = 0, when t=0, the displacement of

13



mass m, is obtained from the solution of Equation (2,19) and using Equation

(2,18) as:
ks ks
X,= X bt - sin w,t = sin w,t (2.20)
2 s 2 2 1
0, [1 - (wz/wl) ] @, [1 - (wl/w2) ]

is thus comprised of two harmonic terms of different

The displacement X,
frequencies and different amplitudes, superimposed upon the displacement
X, = kst of the support, all three terms being directly proportional to
the velocity change ks.

The acceleration experienced by the mass m, may now be determined by
double differentiation of Equation (2,20), with respect to time, and by

considering %s a constant to give:

X 1w,
%, = 5 [sin w, t - (wz/wl)sin wlt] (2.21)

2 1 _ (U.)Z/(Dl)z 2

Since the system is undamped, its motion continues indefinitely., The term
within the parentheses of Equation (2,21) cannot exceed the maximum value
of

+

The maximum acceleration of the mass m, may then be written:

X W, X
s 2 sl

- + (2.22)
N L (wz/w1)2| L - (wllwz)zl

%]

but by Equation (2.8) ismz and iswl are, respectively, the peak accelera-
tion responses of the two masses m,, and my when each mass is subjected in-
dependently to a step velocity shock is. Equation (2.22) may be written

more conveniently in the form:

2 2
- W 0y
IXZImax - 22 AL ¥ 7| A (2.23)
) 1 w, = w,
where A1 = kswl and A2 = ksmz
Wy = kllm1 and 0y = k2/m2



The Equation (2,23) reduces further to

W,

—2
B}

Although the above synthesis was based on a step-velocity pulse input, the

A (2.24)

|i2|max 1

form of Equation (2.23) is also applicable for use with shock spectra of
other types of input pulses (see Reference 2,1) based on the following im-
portant consideration. 1If the shock spectrum were known for a single-
degree-of-freedom system, the pesk response acceleration of the equipment
could then be expressed in terms of the response acceleration Al and A2
corresponding to the two respective natural frequencies Wy and Wy« There-
fore, the shock spectra technique may be applied directly to a two-mass

system when m1>) m This will te further developed in Sub-section 2.4,2,

o
Some limiting cases can be obtained from the above equation. If the equip-
ment is "soft-mounted" and w, << Wy, So that wg is negligible compared to

2 -

W, then IXZImax"'A2’ the response at frequency Wy « In this case, the
structural element is essentially rigid and participates only in the rigid
body motion of the structure. '

If the equipment is '"hard-mounted", then the attenuating effect is
due primarily to the structural element to which it is attached, 1In the
extreme case if wl(( W, then Ilemax
essentially as the shock mounting for the equipment.

The following example will show the relationship between the response

AL, the structural element will act

spectrum of mass m, and the shock spectrum for a specific step velocity

2
pulse input,

Example 2.1

Let ks = 40 in/sec and m, = m1/10. From Equation (2,9), for a single-

2
degree-of-freedom system, the response velocity, 9max’ is equal to x ., In

s
Figure 2.5, this response is plotted as a horizontal line at 9max = 40

in/sec.

In the same figure are also plotted three curves depicting the re-
sponse of mass m, when the natural frequency of mass my is 3 ¢ps, 15 ¢ps,
and 150 cps, respectively, These curves are based on the exact solutions

15
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Example 2,1 (continued)

given in Reference 2,2 and show reaks of approximately 135 in/sec.
We consider the intermediate condition (f1 = 15 ¢ps). If mass ,
has a natural frequency of f2 = 5 cpg, the curve in Figure 2,5 gives a

peak acceleration of iz = 5g, Direct calculation by Equation (2,23) will

give:
. 40 x 2m x 15
A1 = x w = 158 9.76 g
. 9.76
A2 = X W, = 38 = 3.25 g
and
2 2 :
" 5 15
% =le———z] 9,76 g + ———————|3.25g=1.22g+3.66g
i 2|max 152 _ 152 152 _ 52

4.88 g =5 g
Other points on the curves of Figure 2.5 may be similarly compared.
There will be a large discrepancy between Equation (2.23) and the re~

sponse curves of Figure 2,3 as w]-quub;

Equation (2,23) shows that when w, = W 5 the peak response accel-

1

eration of m, becomes infinite when damping is neglected. This condition,

2
however, will be achieved only after an infinitely long time, as shown be-
low:

For the region in which wzfuﬁ-**l, Equation (2,21) may be rewritten

in the form
X - W W, + W
swz w 1

X, = 2 sin(i-——l- t) cos(z— t) (2.25)
21 - af ) 2 2
- (o, /wy
since wzz’, u)l
W, = We = W W, + W
sin ——2—72—1't::-—2——2———1 t and cos —2——2—'——1‘1'_:'_,005 (!)It (2,26)

Equation (2.21) then becomes

X w,w.t cos w, t
s:: = . s 12 1 (2 27)
2 1+ (w,/w) ’

The acceleration X, of the mass i, thus increases continuously as time t

2 2
increases, and the infinite transmissibility indicated by Equation (2,23)
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Example 2,1 (continued)

for w, = w, occurs only after an infinitely long time.

It is also apparent from the physical concept of this condition that

the vibration of the mass m, must continue indefinitely if the infinite ac-

celeration iz is to be reached. This cannot occur, because no energy will

be added after the initial sudden velocity change, and the amplitude X,
therefore must inevitably decrease as the initial energy is dissipated.

The maximum acceleration X, which is ultimately reached by a system sub-

2
jected to a shock represents a balance between the excitation tendency and
the operating energy dissipation tendency to decrease the amplitude of mass

m The mathematics required to determine such results in general form is

1
very laborious, and the methods of Appendix A must be used for a general
solution. 1In Reference 2.1, amplification factors for two-mass systems are

given for various values of damping ratios,

In designing shock isolation systems, it is most important to avoid

1 approaches w, - For practical situations, when the

input is not given explicitly as a velocity pulse, the above method may be

situations in which w

used for approximate results, observing that the maximum acceleration ex-

perienced by the equipment is reduced by the flexible structural member

only if the natural frequency of the equipment is at least two times as
high as the natural frequency of the member. The maximum acceleration
will continue to decrease as the equipment becomes more rigid: and it is
influenced but little by the degree of damping in the isolator provided
that the damping is small, On the other hand, a flexible member is likely

to enhance the peak accelerations of a "soft-mounted" equipment.

2.4 Shock Spectra Envelope

A shock spectrum is a plot of the maximum response of a single-degree-
of-freedom vibrational system to one specific disturbance. The independent
coordinate of the plot is the natural frequency of the responsive system
and the dependent coordinate usually is either the relative displacement,

the pseudo velocity, or the absolute acceleration of the mass of the system.
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Consequently, a spectrum does not describe the response except in regard to
the maximum value of one or more of the three primitive quantities deter-
mining motions., The times of the occurrences of the maxima are practically
never given, because they are very sensitive to the precise shape of the
disturbance., Attention is called to the fact that the maxima cof the three
primitive quantities often do not occur simultaneously, even for a simple
harmonic motion response, and that for many disturbances the time occur=-
rence of the maxima may be far apart.

In the aﬁalysis of ground shock effects due to nuclear weapons, a
shock spectra envelope is defined as an upper bound which hopefully envel-
opes the response motions to the ground disturbances at a given site., As
a result of many studies and evaluation of test data, shock spectra have
been considered to be a very acceptable way, due to limited knowledge of
free-field motions, for defining upper bounds of ground motions for a given
set of weapon effects and site conditions. Shock spectra are used as de-
sign criteria, and if a time-history input is necessary, a pulse (or a set
of pulses) whose shock spectrum generally falls within a prescribed shock
spectra envelope may be used as a basis for determining a more specific

history of the response of particular shock isclation systems.

2.4.1 Shock spectra for elastic systems, The response spectrum corres-

ponding to a step-velocity pulse does not give a realistic picture qf the
response characteristics of a system subjected to ground motion, and it
must be modified in accordance with the requirements of the real conditions
observed during tests with nuclear weapons. This modification applies
particularly to the extreme left and right ends of the horizontal line
spectrum shown in Figure 2,5, Tae inference to be drawn from the left end
of the spectrum is that the relative displacement increases without limit
as the natural frequency approaches zero. Actually, the maximum relative
displacement reaches a definite limit which can be described by bending
the left end of the spectrum downa along a diagonal line representing the
maximum ground displacement, as indicated in Figure 2.6. Correspondingly,
the sudden change in velocity deoicted by Figure 2,5 suggests that the

acceleration of the responding system increases without limit as its natural
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frequency increases. Actually, the velocity change occurs, not instant-
aneously but over a relatively short time interval, resulting in a finite
upper limit to the acceleration., This is reflected on the spectrum by
bending the right end down along a diagonal line representing an envelope

bound on maximum absolute acceleration,

100

V=50 infsec.

!
!
|
%

velocity, inches/sec
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é
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FIGURE 2.6: TYPICAL SHOCK SPECTRA

Shock spectra envelopes giving upper bound displacement, velocity,
and acceleration values resulting from free~field motions due to nuclear
blasts have been recommended based on field measurements and studies in-
volving response of SDOF systems to many types of simple and complex pulse
shapes, The parameters considered are: weapon yield, air, surface or
buried burst, local maximum overpressure, depth of burial of the facility

and soil characteristics. (See Section 3 for specific relationships).
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We now consider a shock spuctra envelope as it is usually defined for
ground motions due to weapon effects, In the low frequency region,the rela-
tive response displacement,D,is set equal to the ground displacement, d, as
a maximum, TIn the high frequency region,the response acceleration, A, when
set equal to 2a,will usually bound the response in this region. Also in the
mid-frequency region,a constant pseudo-velocity, V, equal to 1,5v will
usually bound the response, The values d,"v, and a are the peak ground

displacement, velocity, and acceleration, respectively.

For an example of the use of this shock spectra envelope, assume that
Figure 2,6 defines an envelope which will bound the shock spectrum for a
ground motion for a given weapon yield and overpressure region and that an
isolator is to be designed to protect the eqﬁipment. (The structure is
assumed to move as a rigid body with the free-field of the ground.)

Tt is assumed in this example that tests and calculations have shown
that the equipment can withstand loads equal to 2.3 times the dead weight
loads; that is, the equipment will withstand 2,5 g, Entering Figure 2.6
on the diagonal line representing a maximum acceleration of 2,5 g, the re-
quired natural frequency on the horizontal scale is 3 cps as determined from
the intersection of the spectrum with the diagonal line representing 2.5 g.
For an isolator having a natural! frequency of 3 cps, the maximum deflection
of the isolator in response to the ground motion is approximately 2,75 in,
as read from the intersection of the spectra envelope with the horizontal
line representing a velocity change of 50 in/sec, The design of the isola-
tor must be such as to permit this deflection.

Many studies of ground mot:ons due to earthquakes and nuclear weapon
effects (References 2.3 and 2.4) have generally verified that the method
of plotting the spectra envelope described above provides a nominal but
reasonable bound on the response motions. If the ground displacement has
a half cyclic characteristic, then SDOF systems with periods of vibration
close to the ground displacement duration will have amplified response
amplitudes which exceed the above envelope due to resonance, If the ground

motion has some oscillatory components, the specific shock spectrum may
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exceed the above specified envelope in the frequency regions which coincide
with the ground motion oscillatory components. The recommendations in
Section 3,7 will modify the shock spectra envelope factors given in the
previous paragraph to account for these two effects.

Finally, in this introductory discussion of the concept of shock
spectra envelope, a comparative discussion is given on the shock spectra
envelope for direct air blast pressure impingement on aboveground structures
and ground motions., Let us consider the response spectrum for a parabolic
velocity pulse input as shown in Figure 2,7 (from Reference 2.4). The
equation of motion for a support input is compared with the equation of
motion for a force applied to the mass itself,

e

(1) Support input: y + ay = - X

(2) Force input ¢ X + wx = P/m
The two equations are identical in form,and the shock spectrum for case (2)
will be similar to the spectrum for case (1) if the forcing function P/m

(an acceleration) has a shape similar to the acceleration input RS in

case (1).
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FIGURE 2,7: DEFORMATION SPECTRUM FOR UNDAMPED ELASTIC SYSTEMS SUBJECTED
TO A PARABCLIC VELOCITY PULSE (REFERENCE 2, 4)
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The acceleration pulse, is, in the insert of Figure 2.7 is noted to have a
triangular shape with an instantaneous rise time. Air blast forces applied
to aboveground structures are also idealized to triangular pulses, There~
fore, the spectrum shown in Figure 2.7 can be considered as a good approx-
imation to the spectrum for the air blast loading applied to an SDOF system,
Figure 2,7 shows that the shock spectra envelope defined by the three

straight lines, D = (xs)max’ V=15 (x) s A=2.0 (xs)max’ will also be

s’ max
an adequate approximation for direct air blast loading on structural ele-
ments, assumed to be SDOF systems, Section 4 takes advantage of this ap-
proximation in deriving shock spzctra envelopes for air blast induced load-

ings.

2,4,2 Shock spectra for two-mass systems., An approximate rule may be

developed for the upper bound of the peak response for mass,mz,in a two-
mass system (m1>)-m2), if a shock spectrum or spectfum envelope is given for
mass,ml,when the latter is acting alone as a single«degree-of-freedom sys-
tem, This approach was developed in Section 2.3 for a step velocity pulse
input and Equation(2.23)was derived for computing the maximum absolute
acceleration of mass,mz,from a given shock spectra envelope, irrespective

of the input function. Fquation (2,23) rewritten in terms of natural

frequencies is:

A (2,28)

(§2)max = s 2 E'b
2 1

Figure 2,8 shows a‘typical shock spectra envelope based on the amplification

factors given in Section 2,4.1, Let us consider the three values of fre-
quency f1; 1.5 cps, 15 ¢ps, and 150 cps. From Equation (2.28) we can then
calculate a shock spectrum of m, for given values of fl‘ The three fre-
quencies, 1.5, 15, and 150 cps,represent specific cases of mass and stiffe
ness characteristics of m for which the response spectra of m, are obtained
as shown in Figure 2.8. It is again noted that for frequencies of f2
approaching f1 a resonant condition exists and the amplified response in-
dicated in this region, i.e.,fl/z { f2 4 2f1, may be overly conservative

for damped systems.
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An alternate procedure, in lieu of the spectrum derived from Equation
(2.28), is to construct a respornse envelope using amplification factors
similar to those used for one-mass systems thus bounding the response

spectra of the second mass m This method has been suggested in Refer-

)-
ence 2,5, and the procedure is zs follows:
(a) From the shock spectrs envelope used for defining the peak re-

sponse of m,, compute the response values, Yis 91, il at the frequency

fl = é%» kl/m1 (maximum intensities are implied in this discussion),
The absolute peak motions cf m, are then:

X1 T ¥ TV

X, = X_+y,

il = 3¥_ {response spectrum calculates absolute
acceleration)

These relationships were discussed in Section 2,2,
(b) We now assume that the absolute motions calculated in (a) are
the peak intensities of a complex pulse input to M, and a shock

spectra envelope for m, may be defined by the three straight lines:

Dt = %y s Xty

vr = 1,5 X, = 1.5 (xS + yl)
. . ..

A 2.0 Xy 2,0 X,

based on the amplification factors recommended in Section 2.4.1.
In Figure 2.9, the above rules are applied for three cases,
f1 = 1.5 cps, 15 cps, and 150 cps, respectively. For the intermediate case,
(fl = 15 cps) for example, ¥ &1, and il are 0.9 in, 85 in/sec and 20 g
respectively, The shock spectrum for mass m, when mass m has a natural

frequency £, = 15 cps is then obtained as:

1
' ] = = 3
D X, * Y, 8 + 0.9 = 8.9 in

v 1,5 [85 + (2/3) 85] = 210 in/sec

A

2x20g = 40 g
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The response spectra bounds for mass,m, , are shown in Figure 2.9 with these
peak values,

Also, for £, = 1.5 cps, from Figure 2.9,

1
D' = 8 + & = 16 inches
A 1.5 [75 + (2/3 85] = 225 in/sec
At 2x1.6g=3.2¢g

It is seen here for fl = 1.5 cps that the response displacements of

m, are amplified by a factor of Z (which closely bounds the spectrum in
Figure 2,8), It may therefore be concluded that two low frequency systems
should not be used in series. Also, the trapezoid in this case has degen-
erated to a triangle with a limiting peak pseudo-veloéity of 145 in/sec at
the intersection of the constant displacement and acceleration lines, Of
course, the apex of the triangle is the region of possible resonance be-
tween the two masses (fZ:: fl = 1.5 cps) and the value of V' can be in
error due to a hump at the resonant region which the shock spectrum does

not account for.

For fl = 150 cps, D' = 8 + 0,04 ¥ 8 in
V' o= 1.5 [37 + (2/3) 85] = 140 in/sec
A' = 2x90g = 180 g

In this case the response accelerations of mass,m,, are amplified by
a factor of 2 in the high frequercy region, but the relatively stiff spring
of the (ml’kl) system has negligible effect on the displacements of a low-
frequency (mz’kz) systemsy this erwvelope in the high frequency region
bounds the spectrum in Figure 2.& and will be conservative when f2>> fl’
since Eé approaches ;1 for f2>)-fl. For all practical purposes, if mass,
mz,is vgoft-mounted" (k2<< kl), the first mass acts as an integral part of
the structural enclosure, transmitting the ground motion directly to the
"softemounted”" system without any amplification,

The shock spectra envelope for two-mass systems will be used in

several examples given in Sectior. 4 in which mass,m, represents a flexible

support structure and mass,mz,is the mounted item,
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2,4,3 Shock spectra for elastic-plastic systems, The shock spectra

envelope defined in Section 2.4.1 is applicable for a spring-mass System
that remains elastic, Many real situations exist where the flexible ele~
ment will yield plastically to many times the yield deflection before the
element failsy therefore it is feasible (and economical) to utilize the
energy dissipation capability of the material in the plastic region. If
the input is specified as a time-history velocity pulse (or acceleration or
displacement pulse) the elastic-plastic response can be determined by the
methods which are given in later sections of this report. It would also be
desirable, however, to estimate conservatively the peak response by deriv-
ing a spectral bound for an elastic-plastic system as & function of the
amount of yielding, This approach was taken in References 2.4 and 2,5, and
the results and design rules are summarized in this section,

The characteristic of the flexible (or spring) element is idealized
to an initial straight line, elastic portion, followed by a plastic region

which increases in deformation without increase in load, (see Figure 2.10).

Collapse

Load P

- —— =
\4,_..._.._._“_

Yo Deformation

FIGURE 2.1C

An important parameter is the ductility factor (u) which is defined
as the ratio of the total transient deflection (y) to the yield deflection

(ye): .
o= L (2.29)



Because the failure or collapse of many structural elements is govern-

ed by the amount of yielding capability prior to failure, we write

y

m
u‘failurte ;; (2.30)

vhere y _ = total deflection at failure of the element.

For example, it is known that steel beams in flexure can yield to a
# =250 before failure, Therefore, the designer must insist on a p of less
than 50 in the design of a supporting steel beam spring element.

Reference 2.4 reports the results of a parametric study where response
spectrums were derived for a single-degree-of-freedom system with elastic-
plastic spring characteristics, Input pulses with and without ground re-
covery were used, First the response of the elastic system was computed as
a function of the frequency parameter., Then the maximum responses of
elastic-plastic systems were éomputed for a range of ductility ratios of 1
through 10, Figure 2.11 is takea from Reference 2.4 for one of the input
pulses consfdered and is represeatative of the relationship between elastic
response (u = 1) and vielding response (1 (| ¢10). Definite conclusions
can be made concerning the low frequency response and the high frequency
response but the transition region (intermediate frequency region) does not
show a simple relationship between the peak ground velocity and the peak

~response pseudo-velocity,

Low Frequency Region

For any given input pulse, the maximum total relative response dis-
placement cannot be greater than the maximum support displacement. This
holds true for both elastic and elastic-plastic springs. Considering the
response of a range of elastic-plastic systems with different amounts of
plastic yielding, to the same input pulse, the relative amounts.of elastic
and plastic deformation must varyv as shown in Figure 2,12, The total de-
formation is constant and the elastic portion is reduced by the factor % .
This expected behavior is shown in the low frequency range of Figure 2.11

where it can be seen that the values of ye/xs vary approximately as é .
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In Figure 2.12 the yield deflection (ye) for 1 = 2 is one-half the yield

deflection for p = 1 for the sam: total deflection, and in general

1
Gy = TV (2.31)

Since acceleration response ‘in the elastic range is proportional to stiff-
ness times displacement, the acceleration in the low frequency region will

be reduced by % , as beyond Vo the stiffness is zero for the elastic-plastic
system. The plastic behavior (in the low frequency region) becomes an

asset for the designer in reducing acceleration but the total displacement
response which governs rattlespace requirements remains the same for all

values of .

Elastic Response (u = 1)

Elastic-Plastic Response (u = 2)

lLoad

|
L
I * Elasftic-Plastic Response (p = 4)
b
T
v (u=2) y (u=1 Deflection
y_(u=4)

FIGURE 2,12

High Frequency Region

In the high frequency region the bound on the maximum acceleration
response (A) for p =1 is 2(§S)max where(‘}as)max is the peak ground accel-
eration, As p increases,the bournd on the response acceleration approaches
the ground acceleration, i‘e;’A_’(xs%man B increases, The total dis=-
placement is not constant as p increases. For a shock spectrum with a
maximum elastic response acceleration equal to 2 §S max the reduction factor,
C, (Reference 2,3) for elastic-plastic response acceleration is given by

the approximation:
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=
C T (2.32)

Intermediate Frequency Region

The form of the input significantly affects the response in this re-
gion, The pseudo-velocity response is attenuated by the factor L and in
some cases the reduction will be greater if the elastic responseu;pec-
trum {1 = 1) has a high amplification factor, i.e.,the ratio(f—%L——— is
greater than 1,5, For design purposes the reduction factor S max
% has been recommended by Reference 2,3 for the peak pseudo-velocity in
the elastic-plastic case,

The above conclusions are shown in Figure 2.13. The smooth curves
are taken from Reference 2.4 relating the elasticeplastic response spectrum
to the elastic spectrum, If the three regions are defined by straight lines

the relationship between the two spectra are shown as dashed lines in the

figure.

2.3 Relationship of Simple Pulses to Shock Spectra

It was already mentioned that a shock spectrum or spectra envelope
does not give information about the times of occurrences of any of the max-
imum primitive response quantities:; displacement, velocity and accelera-
tion. Moreover, it is important to understand that for a definite shock
input or pulse train a unique response spectrum always can be computed, but
that a response spectrum does not define a unique pulse shape; it may be
related even precisely to numerous, differently shaped, shock inputs since
it gives only maximum response values,

" The waveform parameters that may be predicted by current techniques
described in Section 3 are:

(a) peak ground acceleration (amax)

(b) peak ground velocity (Vmax)

(c) peak ground displacement (dmax)

(d) wvelocity rise time (tr)
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+
(e) positive velocity phase duration (t )

(f) permanent displacement (dp)

The confidence placed in each of the predictions varies widely. One
further parameter not pr dictable by current methods, but which has been
shown to be important to system response, is the total pulse duration (td).

In most cases, the magnitudes of these parameters are fixed by such
factors as weapon yield, range, seismic velocity, and depth of burial,

i,e., the same factors that define the shock spectra, Thus, the waveform
in which the designer is interested must be described in terms of these
parameters. The effect of variations in these parameters on the response
of shock isolation systems, i,e.,the effect of pulse duration, td’ or shape,
as well as phasing of horizontal and vertical components, can be investi-
gated for a given system when they are considered to be important.

Pulse shapes as functions of the above parameters are defined in
Section 3, In Sections 4 and 5 conditions requiring dynamic analyses using
waveforms as inputs are discussed, A simple pulse will be used here to
illustrate how the pulse can be related to the given shock spectra envelope.
Moreover the response spectrum for this input pulse will be derived and
compared with the given shock spectra,

A ground disturbance, d, described by a half sine wave of duration

t . is shown in Figure 2. 14,

d
= %mx T T
b= -d =d sin —
§ | | max £y
m -
- [
= i
a
1
1
td/2 td time

FIGURE 2.14: HALF SINE WAVE GROUND MOTION
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The maximum ground displacement (dmax) and the time duration (td) are the
only two parameters necesgary to define this pulse. The maximum displacement
can be assumed to be the response displacement (D), defined by the shock
spectra, and the time to reach maximm displacement (tdlg) is taken to be the
positive phase duration of the velocity (t+). In this pérticular example

the time duration can easily be determined by taking the first derivative

of the displacement function and equating the coefficient to the peak

ground velocity,

max x t n t
v = cos = v cos (2.33)
td td max td
therefore
n dmax
I e e 2.5
td 3 (c.._))—})
max

and Voasx is usually considered to be two-thirds of the peak shock spectra
velocity (V).

For shock spectra of a linear system, meaning a system with a linear
restoring force and linear or viscous damping force, the magnitudes of the
specific disturbance and the response maxima are linearly related, and only
the shape of the specific disturbance is inveolved. The maximum relative
displacement D of an undamped responsive system with respect to the ground
can be plotted as the ratio D/d against the ratio of the duration td of
the disturbance to the natural period T of the system. (See Figure 2,15
which is taken from Reference 2.6.)

it is noted that for extromely short durations of the disturbance
with respect to the responsive system's period, or for slow systems - the
relative displacement ratio is near unity, i.e., the system hardly moves, but
if the period ratio td/T is near 0.7 a maximum of relative displacement
ratio is obtained. As td/T increases the relative displacement will decrease
and be less than unity for valuas of td/T greater than 1.1. Near the period

ratios 2, 3, 4, etc., local bumps or maxima will occur as indicated,
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max

FIGURE 2.15

The parameters of the shock spectra of Figure 2.0 will be used to see how

the shock spectrum for this pulse compares with the given shock spectra

envelope.
dmax = D = 5 inches
Voax = 213V =2/5 x50 =354 infsec
td = _ﬂégfg?"n 0.5 sec,.

Figure 2.16 shows the given shock spectra with the spectrum for the
response to the half sine pulse superimposed upen it. This shows that the
response for the half sine pulse exceeds the given shock spectra in the
frequency region above 0.5 cps due to a partial rescnance condition.
Therefore if this pulse were considered to be a good representation of the
ground motion the degigner would have to accept the amplified response in
this region.

Input waveforms will be discussed in greater detail in Section 5.
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2.5 Response Analysis Using a Waveform as the Input

The response of a simple system subjected to the indefinite typec of
input and resulting in the form of a shock response spectra has been
described in the previous sectiong., 1In some cases a time-history response
may be necessary te gain sufficient confidence in the design., For example,

a single mass may be supported eccentrically, so that for a simultanecus
horizontal and vertical input its response acceleration and required
rattlespace can only be determined by computing its time-history responsc.
Examples o0f real situations with numerical examples for complex systems will
be given in Section 5, Shock Isclation Systems. A numerical integration
technique which is applicable to a computer solution of a multi-degree-of-
freedom system will be illustrated in this section by taking a single-degrec-
of-freedom system and applying a time-history input to the support thus
obtaining the time-history response.

Starting with the single-degree-of-freedom system described in Section ~.0
with viscous damping included and using the same notatiom as in Section 2.2,

Equation (2.2) can be rewritten in the following form (see Figure 2,17):

() (2.55)

mx + ky +cy = -m dt

- TWL o
T
. k

’*‘*—-—- X,;{,;(-

FIGURE 2.17

Multiplying both sides by dt and integrating between corresponding values
of t and vy t2 Yo
(mis + ky 4+ cy) dt =| -m d(y) (2.%5)

t yl
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the impulse and momentum relatioaship is obtained:

t

2
Fdt = ~-m (¥, -791) (2.37)
£y
where F = (m':&S + ky + cy) is the systemic force during the time interval
t2 - tl' For small intervals of time the area under the force-time curve
can be approximated by:
t
2 F, + F,
Fdt = — 5 At (2,38)
Y

We now can relate the response at time t, to the response at time tl' This

permits a stepwise process in calculating the time~history response wherein
the calculated values at the end of one time interval are used as initial
conditions for the next time interval,

The response relative acce.eration y, velocity ¥ and displacement y
can also be related between time intervals by the same averaging technique

in deriving Equation 2,38. Thus,

. 2 .

v, = 7¢ (Vz - Yl) - ¥y - (2.39)
and

- 2 . . -

Y, it (v, - vy - vy (2.40)

Making the proper substitutions into Equation (2,37), the following
expression is obtained for computing the relative displacement (yz) at time
t2 with respect to the known response at time t1

(%% + 2 + kat)y, = (%% + 2c - k At)yl + 4m &1 - 2m (isé'- ksl) (2.41)

The accuracy obtained deperds on the time interval chosen. The shape
of the forcing function and the ratural period of the system should be con-
sidered when a time interval is selected for computation., Usually an inter-
%6 of the natural period will provide sufficient accuracy for

most purposes,

val equal to
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The above method is a direct approach requiring only one step solu-
tion per time increment} iterations or corrections are not made, Although
Equation 2,41 uses the input in the form of a velocity pulse, other forms
for specifying input, e.g.,acceleration time-history, may be used without

any great advantage of one metheod over another.

A brief description of the B-Method (an iterative numerical integra-

tion method) is now presented since it is widely used in solving civil
engineering dynamic problems. It is more accurate than the one step method

presented above because of the iterative nature of the procedure (Refer-

ence 2.7).
'—. x r—‘- X A
X ,}'( ,S-E k P(t)
s’7s’s_ m M | a——
(a) (b)
Support Input Force Input
FIGURE 2,18

Figure 2,18 shows the two typical conditiens for (a) input at the
support and (b) force applied to the mass, If relative motions are consid-
ered in case {a), then the equations of motion are of the same form for the
‘two cases.

(a) my + ky

- mx _(t)

(b) m + kx = P(t)
The generalized form of the integraticon equations are:

(The subscripts refer to time period,l and 2,respectively,)
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-k (£) - ky, P(E) - kx

. .. 2
¥y m %y - (2,42)
g B o .t
Yy =¥y +t 3 (yl + yz) %, X, +_2 (2, 43)

b o=y 4 At §.+ (A Z(1/2-B)F X =x_+ AEx.+(0t)2(1/2-B)¥

Y25V Yy -8y, 27%y 1 ~Brx,

7 . 2 ..
+ ()" By, )T B X, (2.44)

In the above equations the parameter B must be chosen and it is associated
with the acceleration-time curve, The B value equal to 1/6 assumes a linear
variation in acceleration over the chosen time interval, This value has
been widely used in solving structural dynamic problems, The reader is re-
ferred to References 2,7 and 2.8 for a complete discussion of the proper
value of B for specific gpplications.

The equations are solved by successive approximation over each time
interval, The steps are:

(a) Assume §2 (a first guess of y, = y, is usually assumed)
(b) Compute &2 from Equation (2.43)
(c) Compute Y, from Equation (2, 44)
(d) Compute yz from Equation (2,42)

(e) Compare §2 from step (d) with assumed value in step (a).
Use step (d) computed value of §2 as new assumed value and
repeat steps (b) through (d) until the computed value for §2
agrees with the assumed value of §2 to the desired occupancy.
The above methods (and similar but more accurate numerical integra-
tion methods) can be used in computing the response of multi-degree-of-
freedom systems., A predictor-corrector method is described in Appendix C,
Instead of one equation, such as Equation (2.41), a set of simultaneous
equations are solved for the stepwise response. The numerical integration
method is very laborious if a slide rule or desk calculator are the only
tools available, but with high spz2ed electronic computers this form of

solution is feasible. Although Ejuation (2.41) is for a comstant spring
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rate, k , over the whole range of response, a non-linear (elastic or
hysteretic) spring can be averaged for each time interval in the same way
as the load function was averaged over each time interval, The following

example illustrates this technique using the one step method.

Examgle 2.2

Given: f = 1 cps
m = 1 1b, secz/in
¢ = 2 1b. sec/in
k = 39,4 1b/in
and the velocity pulse shown in Figure 2.19
k“flg? sec
r—\\\*"SO in/secc
}
| N
: k xm \\
e A, ' N\
- fm Lo e :
s iv{P— ; i 4k t
¢ .05 sec 15 in/sec \
0.5 sec 0.9 sec £
&..-‘_.,,,.,M__,,,. . e e e — e e e .
FIGURE 2,19

Substitute the above constants inte Equation (2.41).
Use At = .05 sec for the first two time steps and
At = ,1 sec thereafter
Steps (1 and 2) Yo = . 9541 vy * . 0465 ¥y - . 0233 (xS2 - gsl)

Steps (3,4,=-=) y, = .8356 y, + .0834 §, - L0417 (k_, = %))

vy, = —2—-(y -y, =y
79 X 1 1

Table 2.1 gives the response values for 13 steps and Figure 2.20 is a plot

of the relative displacement and velocity of the mass.
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Example 2,2 (Continued)

TABLE 2.1
STEP TIME X 9 = X 1 - .
INTERVAL  ° © 71 4! Y2 72
1 .05 50 J 0 - 1.1650 « 46,6000
2 .05 0 - 1.1550 - 46,6000 - 3.2784 - 37,9360
3 .10 - 25 - 3,2784 - 37.9360 - 4.8607 6.2900
4 . 10 - 25 - 4,8507 + 6,2900 - 2.4946 + 41,0320
3 . 10 - 15 - 2,4946 + 41,0320 + 1,9631 + 48,1220
6 .10 + 1.8750 + 1,9631 + 48,1220 + 5,5755 + 24,1260
7 . 10 + 1.8750 + 5,5755 + 24,1260 + 6.5928 - 13,7800
8 .10 + 1,8750 + 6,5928 - 3,7800 + 5,1156 - 25,7640
9 . 10 + 1,8750 + 5,1156 - 25,7640 + 2,0477 - 35,5940
16 . 10 + 1,8750 + 2.0477 - 35.5940 ~ 1.3356 - 32,0720
11 . 10 + 1,8750 - 1,3356 - 32,0720 - 3.8689 - 18,5940
12 .10 + 1.8750 - 3,8689 - 18,5940 - 4,8616 - 11,2600
13 .10 + 1.8750 ~ 4.8616 - 1.,2600 - 4,2454 + 13,5840
B : | Relative Displacement .
60 6.0 | RE '
; -
w w0l b |1
; 2
. | ,
~ 20 2.0} T e ef ' -
5 /o
2 ~ ! / i
5 0%E 0 SO— i
~ 2 A 42 .3 Ny
Z" 8 / . | ; i .
o ] ‘ E ‘ ; :
%-20 «&2.0 VA 5 ‘f'/ - l i \4\'
F(l-‘) .E (! ! I , ; X
> A | z ! R ;
40 40| AN L ,; | |
! | | JRelative Ve1ocityi i
‘ !
60 =6.0 ] ( R b f !

FIGURE 2.20
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2.7 Texts on Principles of Shock Isolation

In Section 2 only some of the basic concepts on shock isolation have
been included. These concepts are developed further in subsequent sections
and are applied to the design and analysis of systems that must survive the
air blast and ground induced motions. Section 3 covers the ground motions
resulting from weapon effects, The air blast characteristics are based on
the work by Brode (Reference 2,9) and applied in the report by direct refer-
ence. Section 4 considers the structure response to both the air blast im-
pingement and ground motion in arriving at a resultant motion to equipment
or platforms attached to the structure. Shock isolation system design and
analysis methods are discussed in Section 5 and the types of spring isola-
tors used in shock isolation systems are covered in Section 6. The reader
should consult texts on principles of shock isclation and vibrations for
addi tional background, References 2.6, 2,10 and 2,11 are particularly

recommended,
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SECTION 3: GROUND MOTIONS

3.1 Introduction

Structures located on or extending to the surface will experience
loadings due to the air borne shock wave as well as to seismic or ground
borne disturbances coming through its foundations, but a fully buried
structure will receive only seismic disturbances,

Our knowledge of air borme or shock wave overpressures for different

types of nuclear weapon bursts, yields, times and locations from ground
zero is relatively precise. The corresponding particle or wind velocities
and the reflection pressures may be obtained from numerous references

(cf Ref% 1and 3.4). This section relates only to ground motions,

Seismic disturbances emanate from the initial, almost instantaneous
and almost point pressure source located above or below ground zero as well
as from an expeanding, relatively narrow, and intense air bressure ring load,
coincident with the moving air shock wave front and followed by a less in-
tense air pressure area load. The "point!" pressure at ground zero initiates
a direct seismic wave disturbance that may be reflected and refracted by
underlying strata before it arrives at the structure, but the expanding
narrow and intense ring load on tthe surface will continue, as it expands,

to generate or induce seismic waves of dimishing intensity, Since the pro-

pagational velocity of the expanding ring loading gradually approaches the
acoustic value in air it is certain that the initial direct seismic wave
generated by the "point" load from ground zero as well as the ring load
induced seismic wave will outrun the air shock front if the effective seis-
mic velocities of the ground are significantly higher than the air shock
wave's terminal velocity of about 1100 fps, In fact outrunning aoccurs
whenever the near surface seismic velocity is greater than the velocity of
the air blast front., Since seismic motions attenuate more rapidly with
distance from ground zero than the overpressure, the air blast and the ine
duced seismic waves will be of primary concern at large distances, At

closer in regions where only buried facilities are feasible the direct
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seismic disturbances will gain in importance.

There are three basic ground motion characteristics that must be
knovm in order to define adequately the input motions to shock isolated
systems: (a) the times of arrival of air borne and seismic waves from
which the phasing of the various loading phenomena may be determined; (b)
the peak intensities of the dynamic stresses and motions associated with
the various sources of excitations, and (c) the time-dependent functions
defining the buildup and decay of stresses and motions,

Ideally, a general solution giving the values of all three sets of
data would be the most consistent and unified method by which the ground
-motion characteristics could be defined. Only partial progress has been
made, however, along these lines, and solutions are available only for
idealized conditions that do not correspond well with the real situation
in a rock or soil medium, The results are not, therefore, applicable
directly to the design of shock isolation systems, The approach that will
be taken in this report is semi-empirical. Mathematical elegance is sac-
rificed where warranted in order to arrive at results for which fairly
adequate substantiation exists from field test data, Also, rather than
seeking a general solution that gives the complete time history and in-
tensities of stresses and motions of ground environment, three separate
and more or less independent methods will be used to arrive at the three
basic sets of data, which, briefly stated, are the times of arrival, peak
intensities, and waveforms of the ground motions and associated stresses,
The justification for this simpler approach is the fact that empirical data
may be used for each set of data without affecting the other two, thereby
making the best use of the limited amount of information available from
tests, The resulting inconsistency in the mathematical techniques for the
three areas of interest is more than offset by achieving results that are
consistent with test observations in real media,

This section will, therefore, be developed in three parts: by prin-
ciples of wave propagation the times of arrival of airborne and seismic
waves will be obtainedy by using simple empirical relationships and test
data the peak intensities of displacement, velocity, accelerations, and

stress will be calculated; and by intuitive reasoning and test data, simple
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mathematical relationships,depicting the ground motion time history,will be
given. The most useful part of this section, 3.5, dealing explicitly with

numerical values of ground motion, can be readily understood.

In other sections of the report, the use of these parameters in cal-
éulating the motion of the enclosing structure and in obtaining the re-
sponse of shock isolation systems will be explained,

For some practical purposes of ground motion application to design

problems it may not be necessary to read Subsections 3.2, 3.3, and 3.4

since these sections have been included so as to provide a deeper under-
standing of the phenomena than normally can be expected of people whose
practical design duties do not warrant the effort required to have compre-

hensive understanding,

3.2 Times of Arrival of Ground Disturbances

3.2,1 Multiple seismic waves, An understanding of seismic wave propagation

is necessary for assessing the input motions and to gain insight as to the

arrival sequence or phasing of the initially upward motion of seismic origin

and the initially downward moticn of air pressure origin, Some facilities

are very sensitive to initially upward accelerations., A secondary purpose of
the study is to show that the effect of a multilayering system, exhibiting
seismic velocity increases with depth, is to channel or to redirect nearly
all the half space energy flux to the surface, thereby reducing the dis-
persive attenuation of dilataticnal and shear waves to one of two dimensions
rather than of three, The following terminology will be used:
a., Direct seismic waves originate instantaneously at ground zero GZ or
near the edge of cratex, they propagate entirely through the ground
to the station in question, suffering reflections énd refractions -at

material interfaces.

b, Induced seismic waves originate continucusly at the leading edge of
the expanding ring load of the air pressure, they propagate entirely
through the ground to the station in question, suffering reflections

and refractions at material interfaces.
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¢. Dilatational or push-pull seismic waves involve periodic changes in

the volume of the half space material through which they propagate.

d. Distortional or shear seismic waves involve only distortion of the

half space material through which they propagate. Their displace-

ments are transverse to their direction of propagation.

e, Surface or Rayleigh seismic waves involve dilatation as well as

distortion of the half space material through which they propagate
relatively close to the surface, They exhibit elliptical displace-
ments in vertical planes.

Due to the fact that many facilities are very sensitive to initially
upward impulsive motions and such motions will result from refracted-
reflected phenomena in stratified half spaces, it is of importance to
determine whether or not these upward motions will arrive at a specific
location before the arrival of blast overpressure, If this occurs the
seismic waves are spoken of as outrunning the overpreséure, and phasing of
the two motions will bhe required,

A very rough qualitative idea of the multiple possibilities of seismic
waves arriving at various locations in a stratified half space can be obtain-
ed by considering Figure 3.1 in which four facilities have been located. A

more quantitative treatment of seismic wave travel will then follow.

In Figure 3,1, the symbols are defined as:

Tn = transmitted or refracted wave from layer n

aem reflected wave from interface n - m

TRn_m = critically refracted-reflected wave through interface n, m
P = overpressure wave

This schematic diagram does not include either shear wave or Rayleigh
wave generation at interfaces or near the surface, Four facilities,
differently located with respect to ground zero and surface are shown with a
few of their seismic ray paths indicated, Depending on geological stratifi-
cation and on the yield of a nuclear burst, the direct* and/or the
blast front induced seismic waves may outrun the expanding blast wave front.

A very rough qualitative tabulation of possible waves at the four facilities
* L

Direct seismic waves will also be referred to as crater induced.
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FIGURE 3.1
is shown in Table 3,1, The indicated degree of importance is relative with

respect to each facility and category of generation, moreover, it will depend

on the quantitative aspects of the stratification,

3,2.2 Generation of Seismic Waves by a "Stationary Point™ Source on the Surface

of an Elastic Half Space

3.2.2.,1 Types ofseismic waves generated, A suddenly applied, normal, point

load will cause rupture or cratering at its point of application on the sur-
face and thereby generate displacement disturbances in the surrounding
unruptured elastic half space, Dilatational or volumetric change types of

elastic waves as well as shear or purely distortional change types of elastic
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Facility Type of WavefCrater InducedEDegree of Importance|Blast

Table 3,1

Multiple Seismic Waves Arriving at Four Facilities

p—

I ’3?1’2’3’4 i down - radial.E High % down - radial
Deep R4-5 E up - radial ., Low i up =~ radial
close in TR4-5 P up - radialz Medium | up - radial
T E radial | High ? down - radial
R1-2 g radial - up Medium * down - radial
R, .3 | radial - up g Medium low - radial - up
R " up - radial! low up - radial
T 3-4 j
Shallow R&-S 5 up - radial f Very low | up - radial
burial ‘ TR1_2 " radial - down ? High - radial - down
TR, 4 up - radial i Medium up - radial
TRB-& up - radial Medium low up =~ radial
‘ TR4_5 up =~ radial Low up - radial
j T1 radial Medium high " down - radial
‘ R1-2 ' radial - up Medium low radial - up
I1I R2-3 “radial - up Low radial - up
Flush R3_4 up - radial Very low up - radial
with Rl‘_5 up - radial Negligible up - radial
ground TRl_2 radial Medium high radial - down
ﬂ TR2-3 up - radial ; Medium low up - radial
TR3_4 up = radial | Low up - radial
TR4~5 up - radial Very low up - radial
P none Very high down
3 T1 radial Low radial - up
? R1-2 1radial - up Very low radial - up
} R2_3 up =~ radial Negligible up =~ radial
% R3_4 up =~ radial Negligible “up =~ radial
W R, s up - radial Negligible Cup - radial
Above % TRl_2 up - radial Low "up - radial
ground } TR, 4 up - radial Very low ~up - radial
; TR3-4 up - radial Negligible i up = radial
§ R, 5 up - radial Negligible , up - radial
{ i P none Very high iradial - down
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waves will then radiaté away from the rupturing region into the half space.
Seismic waves generated by a stationary point source are idealized cases of
direct seismic waves from ground zero of a nuclear detonation.

Due to the fact that the degree of confinement of the elastic material
in the half space is a function of its nearness to the free surface, the
dilatational and shear waves will experience changes in environment as they
approach the surface, Demanding that normal forces as well as shear forces
must vanish at the unloaded suriace of the elastic half space, Lord Rayleigh
in 1887 demonstrated that it is essential to have waves of a different type
from dilatational and shear waves, These waves are propagated over the
surface, and they penetrate only a small distance into the half space, They
are similar in type to waves produced on a smooth surface of a pond by an
object falling into the water. Since these Rayleigh waves may be considered
two dimensional they will attenuate less with distance than three dimensiocnal
waves, and therefore they will gain in relative importance with respect to the
former as the distance from the stationary point source increases.

It will be shown later thet the three dimensional dispersion of dilata-
tional and shear waves in a layered half space is greatly modified by the
seismic velocity properties of the layers, Since in general the seismic
velocities increase with depth, the effeét is to refract the seismic energy
in such a way that travel paths initially downwards will be bent upwards and
reach the surface at various distances from their point of origin. This
phenomenon therefore tends to make the seismic phenomena of importance two
dimensional or quasi-two dimensional in explosion dynamics,

3.2,2.2Seismic propagational velocities,

Let E = modulus of elasticity of medium
)y = Poisson's ratio of medium
= modulus of shear of medium
= mass density of medium
c = seismic velocity of dilatational waves
¢ = geismic velocity of shear waves

¢, = seismic velocity of Rayleigh waves
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The propagational speed of the dilatational or axial wave in an elastic

1/2

rod is given by (E/¢ )7 ", but in an elastic space it is:

71172 : /2
2(1-1) | 1 - e
" L ST Y S = t(1+ )(1.20311 "\,/E/@ -1
(1.055 ) . 0.20
=4 1,095 -k/EQ) for ) = 0.25
(1161 § 0.30

In other words, the spatial "confinement" will increase the sperd ¢
from 6 to 16 percent. Unlike the dilatational wave the distortional or shear
wave has the same propagaticnal speed in one, two or three dimensions,

1/2
namely cg = (Glo ) / . The propagational speed of the Rayleigh surface wave

is given by cp = 0.919 Cq for . = 0.25, Moreover, it can be ghown that
the ratio of the horizontal to the vertical displacement of the Rayleigh
waves is constant and equal to 0,681 for ' = 0,25,

3.2,2,3 Reflection and refraction, In general an incident wave at a

boundary, of either the dilatational or the shear type, will produce a pair
of reflected and a pair of refracted waves. Each pair will consist of a
dilatational wave and a shear wave, The angle of incidence together with
the four constants of wave velocities in the two media adjacent to the
boundary will determine the two angles of reflection and the two angles of
refraction as well as the amplitude relationships of the four generated
waves, The boundaries between half space media are considered to be in-
finitely thin, slip free, horizontal planes, and two boundary conditions
arise:

a. Free boundary, i,e, second medium a vacuum or air,

b, Interface boundary between two media.

Two angle of incidence situations, relating to interface bouﬁdarieg,
are possible:

a. Ordinary refraction-reflection (angle of incidence # critical).

b, Critical refraction-reflection (angle of incidence = critical).

Referring to Figure 3.2 let ¢4 and cslbe dilatational and shear wave

speeds in medium (a), while c, and cszrelate to similar speeds in medium (b).
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FIGURE 3,2 DILATATIONAL WAVE CRITICAL REFRACTION-REFLECTION

For a dilatational wave of amplitude A incident at angle o the re-

lationships are:

sin a } sin oy _ sin Bl ) sin ay sin BZ )
‘1 °1 sl 2 a2 ’
where ay and a, ere the angles of reflection and refraction of the dilata-

tional conponents respectively and Bl and Bz are similar angles for the

shear components,

When a, = 90° criticality occurs, then if

¢y = 1000 fps, cgq= 633 fps

cy = 2000 fps, c ,= 1267 fps
sin a. sin ty 1
1060 - 3000 - 2000 b Criticality occurs when o = 30°
sin a sin Bl e
1000 ~ 533 3 sin By = 0.3165 B, = 185
-sin o sin BZ ]
000 - 1267 > Sin B, =0.633 B, =39

Consequently for cllc2 = 0,5 the critical angle of incidence for the
dilatational wave is 30°,
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FIGURE 3,3 SHEAR WAVE CRITICAL REFRACTION-REFLECTION

Referring to Figure 3,3, consider a shear wave of amplitude A

incident at angle 3. Then

sin B sin Bl sin ay sin %y sin 62

- = (3.3)
¢ c c c c

sl sl 1 2 s2

When a, = 90° criticality occurs, then if

c; = 1000 fps, €= 633 fps

<, = 2000 fps, .o 1267 fps
It is seen that B = Bl, and

sin B sin a

1 1 .
633 T 71000 - 1000 °
This means that B. = 39°, Since
sin B ) sin az } sin 62
633 2000 1267 °
g and BZ are not real, Therefore, total reflection of the shear wave
.  aa®
for csllc52- 0.5 will occur when B = 39,
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For angles of incidence larger than the criticals the reflection-

refraction phenomena become rather involved.
The critical slituation, especially for the incident dilatational wave,

is of considerable interest in a study of input motions,

3.2,2,4Simplified dilatational wave travel for layered space,

1000 ft .
I
S
- ) 100 ft
e - c. = 1000 fps / -
a1 ot
%
i
N
¢, = 2000 fps
'30‘3‘:( 2
‘ FIGURE 3.4

Figure 3,4 shows a two layered space, At time t = 0 a disturbance
occurs at point 0,  If surface waves are neglected the direct wave arrives at
station S, 1000 feet away from C, in 1 second. The first reflected wave, at
incidence angle of 780, will arrive at S in (1000/cos 78°)/1000 = 1,02
seconds. At the critical incidence of 30° the first reflected wave will
reach the surface at S' in 2 (100/cos 30°)/1000 = 0.231 seconds, But the
critically refracted wave, a layer-interface-wave, will travel from a to b
with the speed of the lower medium, or 2000 fps, The distance a b is 1000 -
200 tan 30° = 984 ft, Accordingly the arrival time at S of the critically
refracted wave, following the path 0 a b 5, will be

0.231 + 984/2000 = 0.23/+0.492 = 0,723 seconds
or 0.277 seconds ahead of the direct wave from O to S.

For smaller angles of incidence than the critical, say for 200, the
first reflected wave will reach the surface at s in 0,213 seconds, and its
refracted part, entering into the 2000 fps. medium, will not reach the

surface unless it is reflected from a lower layer.
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The capability of an underlying, faster stratum to transmit a wave dis-
turbance to station S ashead of the direct wave is of considerable importance
in a study of input motions since 1t governs outrunning and consequent

phasing of disturbances,
Wave travel curves in two layer space may be plotted as shown in

Figure 3.5.

—t X e e e
'S

- 0 !\ = h e . o7 "’; s o 4

h Y ¢
\ 1 h
I & e e ;. ¥

a b Co
FIGURE 3.5

Waves are sent out at O and arrive primarily by three paths at location
5, x feet distant from O:

direct wave, 0 to S, requiring x/c1 or t, seconds

first reflected, 0f35, requiring j:— [x2+ 4 h2 or tr seconds

1
T2
critical, 0abS, requiring zh ¢, = C 2+ - =t seconds
c.cC .2 1 C cY
172 i 2
Example 3.1
Let c1 = 1000 fps 02 = 2000 fps h = 100 ft, x = 450 f¢t,

Figure 3.6 shows the seismic wave travel diagram for Example 3.1.
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Example 3,1 (continued)
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cY FIGURE 3,6

The critical distance rcr is the distance at which the direct wave
traveling at velocity cy and the critical refracted-reflected wave arrive

simultaneously, it is given by

c, t C

\ _ 2 |
= T, = 2h S =~ 350 ft. (3.4)
i « i 2 1
,//A The critical travel time from O to 5 is
t = 2h_ L c 2 c LR S 0,4 sec (3.5)
cY c1 02 | 2 1 ¢y

this wave therefore arrives at the target S ahaad of the direct wave as is
seen from Figure 3.6.
Example 3.2

Figure 3.7 shows a multilayered half space in which critically re-
fracted wave travels occur and in which the intercept constants Cl’ C2, C3,

and C4 are given by: 57 : -



Example 3.2 (continued)

S T
h1 Velocity ¢, (L

S |
hz Velocity c, (2)

h Velocity ¢, (3

h4 Velocity c, (4)
r
FIGURE 3,7
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Example 3,2 (continued)
The distances at which the slope changes will occur (i,e, the dis-
tance at which the direct wave traveling in layer ! and a critical-refract-

ed wave will arrive simultaneously at the target»S) are expressed by:

C. - C. - C
(rcr) -1 c1 - 2 c. ° (r ) = 1/ 2 17 '
1 1 2 Cr 4 C3 = G,
C -C c -cC | (3.7
) - TeTTe ¢ Cd, T TeTTh:
Cr 4 Cy = MGy LA €4 = HCs

The procedure for constructing Figure 3.8 is to calculate the C inter-
cepts and plot them along the time axis, Then from each intercept Ci draw
the corresponding slope 1/c1+1“ noting that the intercept C0 acts as theorigin.
The slopes will then intersect at the abscissas L The analytical

expressions for rcr are superfluous if accurate drafting is done.

The wave travel diagram for this 5 layered space is shown in Figure 3,8,

| |

ey e @
er, cry er,
r, distance from O in feet

FIGURE 3.8

Example 3.3

Another example is given in Figure 3,9 for a seven layered medium with

uniform seismic velocity increases from 1000 fps at the first layer to 7000
fps at the seventh layer., The method of obtaining the curve for the blast
front will be given in Subsection 3.3,
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Example 3,3 (continued)
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